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PREFACE

Many of the current stock requirements and capability assessment

models used by the Air Force have been influenced by logistics re-

search carried out at The Aand Corporation under the auspices of Proj-

ect AIR FORCE. This report summarizes a part of this research that

substantially broadened the applicability of many of the classical

requirements models. Although the research, which dates back to 1976,

could significantly affect the accuracy and applicability of all simi-

liar models, it has not been widely used outside of Rand and the Air

Force. The generalizations provide a basis for precise calculations

of requirements and capability during the abrupt transition from

peacetime to wartime. The calculations avoid the misleading assump-

tion that the transition may be approximated by a post-hostilities

steady-state solution.

The dynamic modeling techniques used have been applied by D. B.

Rice in the Defense Resouroe Management Study for the Office of the

Secretary of Defense, February 1979, and by J. A. Huckstadt, Compara-

tive Adequacy of Steady-State Ves eus Dynamnic Mode La for. Ca~eu~ating

Stoc age Requiremente, The Rand Corporation, R-2636-AF, November

1980. A proof of the principal result was given by R. J. Hillestadt

and H. J. Carillo, "Models and Techniques for Recoverable Item Stock-

age When Demand and the Repair Process Are Nonstationary--Part I:

Performance Measurements," The Rand Corporation, N-1482-AF, May 1980.

This report gives a comprehensive treatment of these dynamic

modeling techniques. It is intended to provide the layman with the

necessary background to judge when the procedures are appropriate. In

addition, the report presents a rigorous proof of a general form of

the underlying theorem as well as statements and proofs of several

useful results that have not apeared in the literature.

Preparation of this report was sponsored by The Rand Corporation

from corporate funds.

u4s



SUHARY

Like mose models for calculating stock requirements, the models

used by the Air Force to calculate requirements and allocations have

traditionally assumed that the failure process generates arrivals

approximating a steady-state Poisson arrival process. Although many

real-world arrival processes are approximately Poisson, few exhibit

steady-state behavior in the long run.

For example, a tactical NATO war can be expected to give rise to

a transition from peacetime to wartime flying levels that cannot be

captured with steady state models. Two properties characterize such a

scenario: The escalation of hostilities will be abrupt, and the suc-

cess of either side in the first few days of the war may be irrevers-

ible.

To understand our capabilities and requirements in real-world

scenarios, we must model the transition from peacetime to wartime

failure rates and know the distribution of the number of parts in the

repair pipeline. Only than can we hope to assess the effects of our

limited supplies of replacement parts on our ability to fly the de-

manding schedules expected in the early days of a war.

Classically these models have used a-steady-state result known as

Palm's Theorem to model the number of spare parts in the repair pipe-

line. The research reported here generalizes this theorem, which

allows the precise calculation of the distribution of the number of

parts in the repair pipeline at any time during a time-varying or

dynamic scenario, which may include abrupt transitions in the level of

activity. The report is intended to be readable with only a lay

knowledge of probability and statistics. The appendix contains

technical proof of the general dynamic .p 'Thore.a

,avo.d
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I. INTRODUCTION

Many traditional approaches to inventory problems use a classical

theorem for steady-state Poisson processes that appeared in the liter-

ature in 1943 in an article by C. Palm. The theorem has received wide

application. It first described the number of telephone exchanges in

use (thereby providing a mathematical approach to deciding how many

exchanges are needed). Section III gives several examples of its

applicability.

The theorem owes its widespread use to the popularity of a Pois-

son model to describe arrival processes. This popularity is deserved:

There are good empirical and theoretical reasons (Section III) why a

Poisson process may closely approximate real-world arrival processes.

(Additionally, Poisson models have a lot of very nice mathematical
properties.)

Although close approximations to a Poisson process are common,

real-world arrival processes that exhibit steady-state behavior in the

long run are rare. Approximations to fit dynamic, or nonsteady-state,

arrival processes into this steady-state model have run the gaut from

very bad to very clever. In some applications the approximation to

steady state may be close enough to be justifiable. In the case of an

Air Force faced with the need to make the transition from peacetime to

wartime flying it Is not.1

The increased fire power available to most of the world's forces

suggests that if hostilities break out between major powers the esca-

lation of flying activity will be abrupt and demanding. Additionally,

the complexity of the avionics in our tactical fighter forces has been

increasing at a surprising rate. This complexity exacerbates the

supply problem: Complex avionics arr Aifficult to repair and expen-

sive to replace. Adding to the expense, inflation in the aerospace

industry has been alsoet twice the national average. In short, the

need for an accurate requiremnts models is teal. The cost of using

more accurate models is the cost of using slightly more data and

ISee Muckstadt, 1980; and Sec 11I.
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carrying out more complex computations. At a time when computers are

becoming increasingly ubiquitous and computational costs are going

down, there is little to recommend using simplistic, and often mis-

leading, models.

The research described here is due to several people. In 1976 at

Rand, R. J. Hillestadt, T. 0. Lippiatt, and D. Gavor (Gavor is a con- N
sultant from the Naval Postgraduate School in Monterey) realized that

the classical form of Palm's Theorem could be generalized to include

dynamic or nonsteady-state arrival processes. At the same time the

Operations Analysis Office at Uq Pacific Air Forces (PACAF) was using

similar ideas to assess the day-by-day adequacy of stock to support

the transition from peacetime to wartime flying in a Korean scenario

(Crawford, 1977).

The mathematical ideas were first used extensively at Rand in an

unpublished study of the requirements for spare engines by M. B.

Berman, T. F. Lippiatt, and R. Sims. The ideas were also given as

examples in the "Defense Resource Management Study" (Rice, 1979).

In May 1980, Hillestadt and Carrillo first published a proof of

the generalized Palm's Theorem in a Rand publication with a descrip-

tion of its application to stock requirements and performance mea-

sures. A similar but less general proof appeared with a good example

of the fallacy of using steady-state models in Muckstadt, 1980.

Nonsteady-state arrival processes are at the heart of the Dyna-

METRICS/Consolidated Support Capability Measurement System computer

model built at Rand by illestadt and Carrillo. That model has become

the standard readiness assessment model for the Air Force.

Despite the level of interest at Rand and in the Air Force, the

mathemtical ideas discussed in this report have received limited use

ls ere, and the published research has been somewhat disjointed.
1This report provides both an introduction for the layman and a

statement and technical proof of the dynamic form of Palm's Theorem.

It is intended to help the layman develop a feeling for what Is, and

what is not, an appropriate application. A general statement of the

theorms is given along with less general forms that are easy to use

and exact in many applications.

"Apr
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Section T explains the importance of the theorem to stock calcu-

lations and presenta an intuitive proof of the classical form of

Palm'sTheoremufor steady-state arrivals and discrete time. It also

i states the dynamic form of Palm's Theorem. (The appendix contains a

nical proof, which builds on the ideas of the steady-state

proof). Section L4L.gives several different steady-state examples to

provide an understanding of what is, and what is not, a Poisson ar-

rival process and when the dynamic form of Palm's Theorem applies.

Several different statements of Palm's Theorem are developed in Sec-
tion ;to facilitate its application. These forms are used to prove

what has been known as the worst-case approximation theorem. Section

OW~nds with a discussion of the application of the dynamic form to

the calculation of war readiness spares requirements for aircraft.

The examples and the discussion illustrate that there is little

justification for trying to approximate a dynamic arrival process by a

steady-state arrival process. The computational difficulties encoun-

tered in the dynamic form are minimal, whereas the cost incurred by

overestimating or underestimting inventory requirements is often very

high.
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II. PALM'S THEOREM

Inventory systems for expensive reparable items and retail inven-

tory systems for expensive merchandise are frequently modeled accord-

Ing to an (S - 1,S) inventory model. For reparable parts this model

works as follows:

An initial inventory level of S serviceable units is provided.

When a failure occurs, the failed unit is put into the "repair

cycle." If a replacement unit is available in stock, it is put into

service. If not, the consumer must wait until the next serviceable

unit comes into stock from the repair cycle. In this process the S

units become randomly split between serviceable units in stock and

units in the repair cycle. From the consumer's point of view, the

system will meet his needs unless he happens to have a failure when

all S units are unserviceable.

In this description, "repair cycle" is really a misnomer; some

units that enter this cycle may not be reparable. In that case, they

are discarded and "repair time" includes the time elapsed from the

detection of the failure until the receipt of a serviceable unit from

outside sources.

In the case of a retail inventory system for expensive merchan-

dise the scheme has a parallel structure. An initial inventory of S

units is assumed. When a unit is sold, a replacement is ordered from

the supplier, and the random order and shipping time replaces the
repair cycle time.

It is assumed that the user of such a scheme is concerned with

balancing two complementary costs:

(1) The indeterminate, and often intangible, cost of a failure

or loss of potential sale when shelf stock has dropped to zero. (The

cost in this case may be quite high--the cost of an idle airliner

awaiting a serviceable replacement for a vital part, or of a missed

sale in the retail system.)

(2) The cost of providing a sufficiently large number S of shelf

units to provide adequate protection against "stock-outs."

' i5
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For a given choice of S, the complete probability distribution of

the number of orders that occur when the stock level is zero depends

on the probability distribution of the total number of items in the

"repair cycle" (Lu, Brooks, and Gillen, 1969). Thus the problem of

determining an appropriate stock level S hinges on finding the distri- 2

bution of the number of items in the repair cycle at a given point in

time.

This report addresses the problem of solving for the distribution

of the number of items in the repair cycle. To facilitate finding the

distribution of this random quantity, it is commonly assumed that the

failure (sales) and repair (order) processes satisfy the conditions of

a theorem due to C. Palm (1943). This theorem (cf. Feller, 1957, and

Takacs, 1962, for different statements and proofs) originally de-

scribed the number of telephone trunk lines in use; in keeping with a

more general application, this report will consider a failure or sale

as an "arrival" (a failure generates the arrival of a unit at the

repair cycle) and the repair time or order time as the "survival time"

for that arrival. Therefore the discussion will be of the number of

survivors instead of the number of units in the repair cycle at time T.

4 !In these terms, Palm's Theorem states that if the arrival-

survival process satisfies the following conditions, the number of

survivors at any given time is a Poisson random variable (r.v.) whose

mean is given by the formula below.

PALM' S THEOREM

If:

(1) The number of arrivals at any time interval {t: r < t < s)

is a Poisson r.v. with mean (s - r)n, and

(2) The probability that an arrival at time t survives untill

time T is given by F(T - t), and

(3) The survival times are independent of one another and in-

dependent of the arrival process, then the number of survivors at any

time T is a Poisson r.v. with mean A,

IHere, and throughout, until T means at Ze.t until time T.
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where V is the mean survival time,

v.f F(s) ds.
0

It is not necessary to give a complete proof of this form of

Palm's Theorem because it follows immediately from the dynamic or

nonstationary form given below and proved in the appendix.

Feller proves the stationary form of this theorem by assuming

that the survival time is an exponential r.v. and solving certain

differential equations that can be inferred from the assumptions.

Takacs and most authors use a moment generating function proof that

has elegance but may leave the reader with little intuitive feel for

what is happening.

To help build an understanding for Palm's Theorem, both the clas-

sical stationary version stated above the nonstationary version given

below, a discrete time version of the stationary form is presented.

Assume that the number of arrivals on day i is a Poisson r.v.

with mean X and that the probability that an arrival on day i survives

until day k is F(k - i). (Additionally, assume all of the indepen-

dence inherent in conditions (1), (2), and (3) above.) In this case,

the number f survivors on day k is a Poisson r.v. with mean Xp, where

i-o

is the mean of the survival time.
Proof: Consider the distribution of the number Ni of arrivals on

day i that survive until day k:

The probability of m arrivals on day i is given by the Poisson

density function

e A

mli
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and the probability that any one of these arrivals survives until day

k is given by

p = F(k -1).

Thus,

Pr(Ni n)- e m ()pn(1 -n

X ml (U (i -

mmn

.epftf m~ (rn-n)!_m

i e-PA(P)n
n!

This calculation is a restatement of the simple and well-known

result (Feller, 1957) that if a Poisson process is randomly censored

then the censored process is Poisson also. This simple property is

key to the steady-state and dynamic form of Palm's Theorem.

It has been shown that the number of arrivals on day i that sur-

vive until day k is Poisson with mean XF(k - I). Adding over day k

and all previous days it follows (because the sum of independent Pois-

son random variables is Poisson) that the number of suvivors is a

Poisson r.v. with mean

k --
i=-' i-D

where v is the mean survival time.

This simple proof, although given here for the discrete time case,

will work whenever one can break up the time before day k into periods

where R(k - t) is conatant. The hypothesized stationarity of the

arrival and survival processes are only incidentally useful in that

they permit a simple notation. (The dynamic form of Palm's Theorem

and its proof given in the appendix builds on these observations.)

" l _ -- | . . . .I l I I II
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Note also that the result does not depend on the form of F, but

only on p, the mean survival time. This useful property does not

carry over to the nonstationary form. In cases where iA is known but

is not known, the worst case approximation theorem given in Sec. IV

may be used. Section V gives empirical evidence that if the mean and

variance of the survival process are known, the actual choice of an

that has these first two moments is unimportant.

THE DYNAMIC FORM OF PALM'S THEOREM

Throughout the remainder of this report the following assumptions

are made regarding the arrival and survival process.

(1) The arrival process is Poisson with mean function M(e); that

is, the number of arrivals X(k) - t, r < t 4 s, is a Poisson r.v. with

mean M(s) - M(r).

(2) If X(k) - t, the probability that X(k) survives until time T

is given by F(t,T), and the survival process is independent of

{Mn), n * k. If T < t, F(t,T) - 0.

(3) The survival time for X(k) is independent of the survival

times for {X(n), n Q k.
The sequel abbreviates these conditions by saying that the ar-

rival process is Poisson with mean function M(-), and the survival

process is independent of the arrival process.

If the above conditions (1) through (3) hold, and if for fixed T

the function F(tT) is a measurable3 function of t, then the nmber of
eurvivor'e at time T is a Poieon random va,.iabZe wfith mean X(T),

X(T) - J F(t,T) dM(t). (2.1)

The added complexity of the Stieltjes integral (Halmos, 1950)

above has merit: whereas the steady-state version of Palm's Theorem

2 This definition of a Poisson process diffets somewhat from the

usual Se the appendix for a discussion.
SThis is about the weakest assumption regarding F that can be mede

and have the integral (2.1) make sense. It is satisfied, for instance,
if F(.,T) has no more than a countable mmber of discontinuities.

-I
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was stated for continuous time and then proved for discrete time, the

above formulation and the proof given in the appendix hold for both

cases as well as combinations. In the discrete time case where K(,)

has all its mass at lattice points (the number of arrivals on day i is

a Poisson random variable with mean m(i) - M(i) - M(i - 1),) and the

probability that an arrival on day i survives until day k is given

by F(i,k), then (2.1) is equivalent to

(k) F(i,k)m(i). (2.2)

In the continuous time case, if M(e) can be written as an integral:

t

M(t) - f m(s) ds,

then (2.1) reduces to

T
M(t) f f(t,T)m(t) dt. (2.3)

The proof of this form of Palm's Theorem follows the lines of the

proof given above; one divides the time before T up into periods

wherein F(.,T) is "almost" constant and sums over these time peri-

ods. Then one uses the simple result that a censored Poisson process

* is Poisson and the sum of Poisson random variables is a Poisson r.v.

t9

-mI

.1' I
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III. APPLICATIONS

Because the assumption of a Poisson arrival process is funda-

mental to any application of Palm's Theorem, it is worthwhile to de-

velop some notions regarding a Poisson process and when it is and is

not a good approximation of an empirical arrival process.

Researchers are often concerned with some group of entities

(people, aircraft, etc.), each of which may give rise to some event of

interest (make a telephone call, have a radio failure, etc.) in each

time interval. If the entities are numbered 1, 2, 3, ... , n and asso-

ciated with the ith entity is an indicator random variable x(i) equal

to one or zero according to whether that entity gave rise to the event

in some fixed time interval, then the number of events or number of

arrivals is given by y - Ex(i). Suppose that Pr{x(i) - 11 - p(i). If

the entities act independently and all the p(i) are equal to some one /
value p, y has a binomial distribution.

If n is fairly large and p is small, the Poisson distribution

with mean np provides a very good approximation to the distribution of

y (Feller, 1957). It is also well known (although infrequently

stated) that this result is true even if the p(i) are not the same,

provided that they are uniformly small. In that case the mean of the

Poisson distribution is Zp(i). 1  Thus the Poisson distribution is at

good approximation to an arrival process generated by a collection of

entities acting independently of one another, each with a small proba-

bility of generating an event in a given short time interval.

Because complete independence is the exception and not the rule

in nature, these results might seem more academic than useful. How-

ever, from Paul Levy's work on infinitely divisible distributions )
(Feller, 1957), any arrival process where the number of arrivals in

disjoint time intervals is independent is a process of the Poisson

type. Therefore, the Poisson arrival process will be a good approxi-

'For a proof, compute the log of the characteristic function of y
and take limits.

. . . .iii m l la N nn •
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unZeas there is a dependence among entities that causes the number of

arrivals in disjoint time intervals to be dependent. For an example

of this dependence, consider a squadron of aircraft that happens to be

low on spare radios. If a rash of broken radios occurs, the subse-

quent time interval will see a drop in radio failures (there are fewer

radios left to fail). The number of entities must therefore be large

enough with respect to the p(i) that an upswing in arrivals does not

produce a downswing in the following time intervals.

Within the framework just discussed let us look at several ex-

amples of Poisson arrival processes and the application of Palm's

Theorem for those processes.

EXAMPLE 1. FIRE DEPARTMENT REQUIREMENTS

The stochastic arrival of fire alarms in a metropolitan area is a

good example of many entities independently giving rise to low probe-

*bility events. An examination of New York City alarm rates (Carter

and Rolph, 1975) has shown that this process is distinctly non-

stationary: June has four times as many alarms as February, and the

hour from 8 to 9 p.m. has ten times as many alarms as the hour from 2

to 3 a.m. Day-of-the-week differences are also significant. Carter

and Rolph develop estimates of alarm rates as a function of time using

methods of time series analysis and linear regression, and they use

this time-varying intensity function and a Poisson arrival process to

predict the number of alarms.

Suppose we wish to determine the size of the Fire Department

needed at some future date. The work of Carter and Rolph provides the

procedures for estimating the number of alarms. If that number is

coupled with an estimate of the distribution of the random time re-

quired to answer an alarm, Palm's Theorem my be used to estimate the

time-varying mean number of fire engines and crews needed. In this

model the number of engines and crews actually needed will be a Pois-

son r.v. For any given level of funding, therefore, one can calculate

the probability of not being able to cover all alarms during peak

periods and use this criterion to calculate requirements. In this
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application the assumption of Poisson arrivals and of independence

between the arrival process and the time-to-answer process is Justi-

fied.

EXAMPLE 2. PEOPLE WAITING AT A BUS STOP

Excluding early morning and late afternoon times when the number

of people catching a given bus may be highly dependent from one day to

the next, arrivals at a bus stop fit the description of a number of

low probability events generated by a large number of independent

entities. The process is nonstationary with peaks before the sched-

uled arrival of buses. "Survival time" is taken to be the amount of

time spent waiting for the bus. If bus schedules are accurate, then

given the time of the nth arrival, its survival time is essentially a

degenerate random variable. However, this survival time is indepen-

dent of all other arrivals, and that is all that is required by the

dynamic form of Palm's Theorem. Therefore, with Palm's Theorem, the

number of people waiting at a bus stop is a Poisson r.v. whose mean is

given by:

T- f F(sT) M(s)ds.

If buses adhere to their schedule without deviation and these

schedules are universally known, but walking time to the bus stop is

imperfectly known, this example results in an intensity function (t)

with smooth peaks. Then Palm's Theorem is still applicable and the

usual result is that the number of passengers waiting at any given

time T is a Poisson r.v. with man X(T) although both the arrival

process and the survival process are highly dependent on a nonrandom

external event. In that case, A(T) will have zeroes at the scheduled

arrival times. These zeros follow peaks immediately prior to sched-

uled arrival tines.

This example also Illustrates a result that is somtines misun-

derstood: Although the number of passengers waiting for the bus at

tma T is a Poisson t.v. with msan X(T), this stochastic process (nun-

ber of passengers waiting at T) is wot a Poisson (arrival) process.
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Depending on the model under consideration, the size of the population

at different times T1 and T2 may be independent or may be highlyI2
correlated. Accordingly, Palm's Theorem provides a tool to calculate

the distribution of the size of the surviving population at a given

time T1 but does not, per se, say anything about the joint distribution

of the populations, at two different times T, and T2.

*! EXAMPLE 3. AIR FORCE STOCK REQUIREMENTS

Muckstadt (1980) gives an example of a dynamic schedule where

flying initially gives rise to a steady-state Poisson demand for air-

craft engines of 0.8 units per day. Upon the onset of hostilities,

this rate jumps to 3.16 and then tapers off exponentially, resulting

in a 30 day average of 1.0 unit per day. Throughout it is assumed

that repair takes five days. For this process the standard Air Force

calculation correctly compute& a stock requirement for peacetime op-

erations assuming a steady state arrival rate of 0.8 per day. With

the steady state form of Palm's Theorem this implies that the number

of nouserviceable parts in the repair process will be a PoLsson r.v.

with mean

X -(.8 units per day) x (5 days) - 4.

To compute the stock level for spare engines, the Air Force goal is to

provide sufficient stock to cover the number of units in repair with

probability of at least 0.8-that is, to provide s units of shelf

stock where s is the smallest integer such that

I s, A .

For X - 4 this calculation yields a requirement for 7 spare units.

The standard Air Force calculation for the first 30 days of hostili-

ties follows the saw policy; it assumes steady-state demands at the

30 day average rate and provides enough to cover the number of units

- --~---
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in repair with probability 0.8. This policy requires eight units

total to cover the period of hostilities.

The arrival rate after the onset of hostilities will clearly be

nonstationary. Table 1 uses Muckstadt's results and compares the

standard calculation with one that uses the same policy (guards

against stock outages with probability of at least 0.8) but uses the

postulated dynamic arrival rate and assumes several different forms

for the repair time distribution. In cols. (3) and (6) times are

assumed to be always five days. In columns 4 and 7 we have assumed

that repair times are exponential random variables with a mean of five

days. Columns 5 and 8 make the same assumption and further assume

that there was a standdown before hostilities resulting in the com-

pleted repair of all units before the escalation in flying.

Several things in this comparison are interesting. As expected,

the steady-state result significantly underestimates the stock

needed. From the steady-state form of Palm's Theorem, the calculation

doesn't depend on the shape of the distribution or repair times; how-

ever, the dynamic calculations clearly do. The assumption of constant

repair times results in a higher number in repair during the surge,

but that number drops sharply following the surge in flying. This

phenomenon is examined in Sec. IV.

A standdown before the surge does not appreciably affect the

maximum number of units required, but it does cause the requirement to

rise more slowly in the first few days. The standdown may thereby

provide a small hedge against the time required to ship additional

stock or to reconstitute battle damaged maintenance facilities. Al-

though the standdown can mitigate the stock requirements slightly, a

steady-state approximation may grossly underestimate the number of

parts required to support a surge.

1* - 14



Table 1

COMPARISON OF STEADY STATE AND DYNAMIC STOCK CALCULATIONS

Steady State Calculation

Day Expected Demands Expected Number in Repair Required Stock Levels

Before Day 1 .8 4. 7
Days I to 30 1.0 5. 8

Dynamic Calculation

Expected Number in Repair Required Stock Levels

(1) (2) (3) (4) (5) (6) (7) (8)

Exponential Exponential
Expected Degenerate Exponential Repair with Degenerate Exponential Repair with

Day Demand Repair Times Repair Times Standdown Repair Times Repair Times Standdown

Before
Day 1 .8 or 0 4.0 4.0 0. 7 7 0

1 3.0 6.2 6.0 2.7 9 9 5
2 2.7 8.1 7.4 4.7 11 11 7
3 2.5 9.8 8.3 6.1 12 12 9
4 2.2 11.2 8.8 7.0 14 12 10
5 2.0 12.4 9.0 7.5 15 12 11
6 1.8 11.2 9.0 7.8 14 12 11
7 1.7 10.2 8.9 7.9 13 12 11
8 1.5 9.2 8.6 7.8 12 12 11
9 1.4 8.3 8.3 7.6 11 12 11

10 1.2 7.5 7.9 7.3 10 11 11
15 .7 4.6 5.7 5.5 6 9 8
20 .5 2.8 3.8 3.7 4 6 6
25 .3 1.7 2.4 2.4 3 5 5
30 .2 1.0 1.5 1.5 2 3 3

4;rr
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IV. STATIONARY SURVIVAL TIME DISTRIBUTIONS

Tools and heuristics are developed here to facilitate the ap-

plication of Palm's Theorem when the user has incomplete information

about the mean arrival function (t) and the survival distribution

F(tT). A "worst case" approximation theorem is proved, showing that

in many inventory problems of practical interest F may be approximated

by a degenerate repair time distribution (that is, by assuming the

*repair time is constant) with conservative results. Following a peak

*in the demand rate, the degenerate distribution gives an upper bound

on the expected number of units in repair.

To simplify notation, we impose the following restrictions on M

and F

The survival time distribution is stationary, that is:

F(t,T) - F(T - t), (4.1)

and the mean demand function M(t) is equal to the integral of its

derivative:

t
M(t) - m(s)ds. (4.2)

Under these conditions Eq. (2.1) can be usefully rewritten in

several different ways. From (2.1),

T

AM f !(t,T)dM(t),

T
A = (T) - F(T - t)dM(t), (4.3)

A(T) M M(T) - F*M(T), (4.4)
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where *" denotes the functional convolution of F and M; since con-

volution is comeutative,

T
X(T) - M(T) - f H(T - t)dF(t). (4.5)

If R denotes the random survival time, then (4.5) may be rewrit-

ten

X(T) - M(T) - Ex[M(T - R)], (4.6)

&where Ex denotes the expected value with respect to the distribution

F.

Using the density u(s), (4.3) may be written'.

4 T
X(T) - M(T) - f F(T - t)m(t)dt. (4.7)

Equations (4.3), (4.4) and (4.5), expressing A(T) in terms of the

convolution of M and F, are useful from the spectral theory point of

view. They tell us, for instance, how the frequency components or

power spectra of X compare with the spectra of M and F and provide af way of quantifying the extent of changes in I resulting from changes

In M. Equation (4.6) has a very intuitive interpretation:

Ex[((T - R)) can be interpreted as the expected number of arrivals

that are no longer surviving; thus (4.6) states that the expected

number of survivors at tir T is the expected number of arrivals be-

fore T minus the expected number of deaths before T.

Equation (4.7) enables us to look at some special survival time

distributions. Suppose R is degenerate at 10-i.e., survival time is

constant and equals 10. Then,

1(1)-fi. 0 t( 10

10, otherwise.
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and suppose that m(t)1 has a graph that looks like:

F(12-0) ________ ___ ___

-20 -10 0 10 20 30 40 50 60

Fig. 1--The intensity function m(t)

Then X(t) evaluated at, say, t - 12 is given by:

12
A(12) - f P(12 - x)m(x)dx

0

12
- f m(x)dx

2

X(12) is what we would see if we averaged the m(t) curve over the

window F. That is, following the definition of a Rieman integral, we

would vertically slice these curves and multiply their coordinates,

1This same m(t)--composed of a flat section, a sinusoidal

section, and a section with exponential decay-has been used in Figs.
1-8.3
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then sum the products over the window F. For A(2 7 ), the right-hand

side of the window slides out to 27.

Consider another window. Suppose survival time is an exponential

r.v. with mean 10:

-t/1o
F(t) I - e , 0 4 t,

/F (t)

-20 -10 0 10 20 30 40 50 60

Fig. 2--The exponential distribution function

Hence, for fixed T 22, the window F(220 - x) looks like

I0

F(32-0

0-20 -10 0 10 20 30 40 50 50

Fig. 3--The window F(22-t)
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and using the same m(t)

7 :

8 NN M__

4=

2=

0 1.... ..". ......... = ......... ......... ' '. . ..........

-20 -10 0 10 20 30 40 50 50

Fi.4-()Crepnigto anexponential repair time having mean

and standard deviation equal to 10 days

The mean size of the population at time Tot X(To0), is given by

X (TO 0 fT F(T 0 -x)m(x)dx

0

and can be visualized as averaging m(t) over the window P. For the

intensity function m given in Fig. 1 and exponential survival times,

X(T) is given in Fig. 4.

In the case where F was degenerate, the area under F-that is,

the "size" of the window---was equal to u. Integrating by parts gives

the well-known result that this is always the case for nonnegative

random variables:

m • -
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Area under F - f F(t)dt - [- F(t)ldt =
0 0

Thus, if the mean lifetime increases, m(t) is seen through a larger

window and at any point the mean of the surviving population will

increase accordingly.

All windows corresponding to different lifetime distributions

having the same mean have the same "size," but clearly they don't all

have the same shape. Furthermore, windows that are "long and low"

will result in more averaging of m(t) than shorter windows of the same

size; as a result, for a fixed arrival density m(t), they will give a

smoother mean function A(t). Because F(t) = 1 - F(t), F will be "long

and low" if F(t) does not quickly converge to 1 as t gets large.

Thus, the degree of smoothing that we get when we calculate X(t) from

the arrival density m(t) is largely a function of the size of the tail

of the distribution F, and to a degree this can be characterized by
2

the second moment or variance o of F.

In the sequel, several numerical examples suggest that, from a

practical point of view, correctly estimating u and a2 for the
survival process is what really matters; the resulting A(t) function

is quite insensitive to the choice of a particular F having these

first two moments.

Just as increasing the variance o tends to give increasing
smoothness to X(t), if a 2 = 0--that is, the survival time is

constant--there should in some sense be a limiting case X 0(t) that is

more peaked than the graphs of X(t) functions corresponding to other

survival distributions having the same fixed mean R0 .
2Suppose that a . 0--that is, survival times are degenerate and

equal to some value RO . Then if i(s) has a unimodal peak that can be
"straddled" by the window F, A0(t) will have a local maximum at a

value t0 such that m(t0) = m(t0 - 0
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11

1 -- _ _ _

0 I.j.LIIZ .L ...... ./LLL ... . LL~ 1-1 . . L. L. L*LLL

-20 -10 0 10 20 30 40 50 60

Fig. 5--Finding the local maximum of A0

(If M(th0 M(t - RO) then X0 (t0) could be marginally increased by

sliding the window slightly to the right or left.)

If m is unimodal and Xo peaks in the vicinity of to, then

m(t - RO ) is increasing for t in a neighborhood of to, and

if m(t - Ro) is increasing, then M(t) - m(s)ds is convex for t in

the neighborhood of to - Ro. If, instead of being degenerate, the

lifetime R varies around its mean R0 but its range is restricted so

that M(t 0 - R) is convex throughout the range of 1, then using the

convexity of M and Jensen's inequality (Chung, 1974, p. 47):

Ex M(t0 - R) ; M(t0 - Ro)-

Thus, if A(t) is the mean population size determined by the distribu-

tion of R (recall that A0(t) is the mean population size determined by

a degenerate R), (4.6) implies:

%,4
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Xo(t M(to) - M(t0 - Ro ) (4.8)

> M(to) - Ex M(t0 - R) =(to).

In fact, the inequality (4.8) does not depend on Xo(to) being the

maximum of X0; it holds for any to such that m(t0 - R) is increasing

throught the range of R or, equivalently, such that M(t0 - R) is con-

vex throughout the range of R. We have proved the worst case approxi-

mation theorem. 2

WORST CASE APPROXIMATION THEOREM

Let r be a class of survival time distribution functions having

the same mean R0 and let X0(t) correspond to a constant survival time

as defined above. If the mean density function m(t0 - R) is, for some

fixed to, increasing throughout the range of R for all F in r, then

X(t0 ) 0 X(t 0 ) (4.9)

for any other X corresponding to F in t.

We have shown that, for values t such that m(t - R0 ) is increas-

ing, the 0(t) given by the degenerate survival time distribution is

uniformly larger than other X(t) corresponding to survival time dis-

tributions with the same mean and suitably restricted range. For this

reason, A0(t) could be used in a worst case analysis to get an upper

bound on the maximum population size if nothing is known about the

survival time distribution except its mean.

It also follows by the same arguments that, if m(t0 - R) is de-

creasing throughout the range of R, then M is concave and the inequal-

ities reverse:

2Although well understood and applied in Rand publications, this

theorem has not previously been formally stated or proved in the lit-
erature to the best of my knowledge. An alternative proof of a sia-
ilar theorem has been given by Donald Gavor of the Naval Postgraduate
School, Monterey, California (private communication).

• ... -i
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X0(t) X(t0) (4.10)

In other words, following the earlier conjecture that X 0(t) is

the most peaked or least smooth of the A functions corresponding to

survival distribution with mean R0 , subject to restrictions on the

range of the life time, following a peak in m(t), X0 (t) will have a

higher peak than other X(t) functions corresponding to survival dis-

tributions with the same mean. Similarly, following a valley

in m(t), 10(t) will have a lower valley than other X(t) functions.

Thus, in keeping with the observation that increasing a increases the
"smoothness" of X(t), the A0(t) we get when we set a - 0 is more

peaked than other X functions corresponding to lifetime distributions

having the same mean and restricted range.

If in the range of interest the intensity function m(*) is essen-

tially linear (and hence M(-) is essentially quadratic), then it fol-

lows from the Taylor series expansions

m(t - R) Z m(t - R - (R- R'm'(t- R0) + (R - R0)2m"(t0- RO)/2

~0  m~ 0  R0  0,0 0R)mC 0  0 /

and Eq. (4.6) that

A(t0) - 10(t0) a 2m'(t 0 - RO)/2 (4.11)

In this case, (4.9) or (4.10) holds, depending on whether a(*) Is in-

creasing or decreasing. Moreover, in this case, the error involved in

assing that repair times are constant (Eq. (4.11)) is equal to a

constant multiple time the actual variance of the repair times.

Returning to the Air Force inventory system, it is unfortunate

that the use of the function 1(t) to forecast spares requirements has

been slow to receive widespread acceptance. In part, this may be the

result of a concern that the computation is inextricably linked with a

plan or scenario that is in reality likely to be wrong, hence the

results of the computation will be misleading.
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This gives rise to several similar questions that I address in

some detail:

(1) If spares requirements are computed from one scenario, but

the war dictates another, will spares be adequate?

(2) Conversely, suppose that spares requirements are computed

from one scenario, but the war will probably be fought differently.

Will the errant calculation require an excessive and unnecessary ex-

penditure?

(3) If several different war plans are used for planning, will

they differ greatly in their spares requirements?

The answer to all three questions, with suitable caveats, is

No. Moreover, if there are large differences-if for instance Opera-

tions or Planning is working from a war plan that is totally unreason-

able from the point of view of Supply--then the lack of reality of

such a plan should be understood and the plan, or the supplies avail-

able, should be altered as necessary.

THE CAVEATS--PROBABLE PERTURBATIONS IN WAR PLANS

Generally speaking, war plans are statements of goals that pro-

vide direction to the relevant units of a major command. As goals,

these plans should not be unrealistically demanding, nor should they

demand much less than can be achieved. Given this generalization, it

follows that in war a unit will probably not fly significantly more

sorties over an extended period of time than called for in the war

*plans formulated by that major command.

It is even less likely that the sum of the sorties flown by

the units in a theatre over an extended period of time will signifi-

cantly exceed the number that is called for in the plans. Several

factors other than supply augur against high sortie rates for extended

periods of time. It is to be expected that the early days of high

flying activity will see high attrition and battle damage to

aircraft. The resulting reduction in the number of Mission Capable

(NC) aircraft will inhibit subsequent sortie production. In addition,

mintenance personnel will be pressed to generate large numbers of

sorties and the NC rate my subsequently suffer from lack of person-

nel, even if a generous supply of parts is available.

! .
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None of these constraints will prevent short spurts of flying

activity from exceeding the war plan. But how will these short spurts

influence the spare parts requirements? As shown above, the smoothing

induced by looking at the curve of expected demands through an "aver-

aging window" minimizes the effect of these spurts on the parts re-

quirements, especially if the surge is short compared with the size of

the window or, equivalently, compared with the mean length of time

required to repair or resupply. In summary, excursions from the war

plan will generally not cause significant shortfalls in the spares

requirements.

Will a dynamic requirements calculation cause substantial over-

stocking if flying levels fall below the war plan? Not if the "short-

fall" in flying is short-lived. In this case, as in the case of

short-lived surges, the smoothing achieved by looking at these spurts

through the averaging window minimizes the effect of these perturba-

tions. If the shortfall in flying is not short-lived, requirements

for that unit will be overstated. If the loss in sorties is made up

by other bases flying the same type of aircraft, the surplus of spare 4
parts may be needed and used at those bases. If a long-term loss in

sorties Is not made up, the spares requirements wiZZ be overstated,

but this "flaw" is not peculiar to the dynamic calculation; the same

problem exists with any spares requirements calculation.

What plan should be used if there are several conflicting war

plans? There are possible differences in plans outlined above that

will cause inconsequential differences in spares requirements. If the

plans have major differences in their effect on the spares require-

ments, then the planners should know and understand that, and it

should not be obscured by calculating requirements on the basis of

steady-state calculations only remotely related to the war plan.

Different plans being considered should be evaluated for their effects

on supply. If the differences are small, the choice is unimportant,

from the point of view of supply. If the differences are substantial

and sufficient spares are not available to support an ambitious plan,

then the commnd Involved should understand that.1i _ _ _ _ - _
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LACK OF SENSITIVITY TO THE CHOICE OF REPAIR TIME DISTRIBUTION

In the steady-state calculation less information is needed about

repair times. Palm's Theorem says that we do not need to know the

distribution of repair times, only the mean repair time. It was men-

tioned that the dynamic spares calculation is sensitive to the size of

the averaging window--that is, to the mean repair time. The steady-

state calculation is no less sensitive to changes in the mean repair

time.

The difference between the steady state and dynamic models is in

the sensitivity to the higher moments. The steady-state calculation

is insensitive to (in fact independent of) all higher moments. the

degree of smoothing in the dynamic calculation is influenced by the

size of the tail of the repair time distribution. In Figs. 4, 6, and

7 I have plotted the mean of the number of units in the repair pipe-

line, by day, using the same flying schedule but three very different

repair time distributions having the same mean and the same

variance. From the point of view of requirements calculations, the

curves are nearly the same. The peaks occur at the same time, and the

up-slope parts of the curves that dictate when the extra spares may be

needed are almost identical. The large differences in the tails of

the distributions cause differences in the curves in the days after

the peak, but they would not affect a requirements calculation. For

comparison the more peaked A0 (t) corresponding to constant 10 day

repair tines has been plotted in Fig. 8.

Such examples lead us to believe that if it is possible to esti-

mate the mean and variance of the repair time distribution, it is also

possible to use Just about any distribution having these moments and

the results will be the same.

Fortunately, with the data currently available In the Air Force

supply system, we can estimate the repair time distribution for every

reparable part and In so doing closely estimate the repair time vari-

ance. To estimate the repair tie distribution, recall that the

current systes provides percent base repair (PBI), repair cycle time

(RCT), and order ship time (OT) for all Items. If this information

is used and repair tiae is assmd equal to RCI with probability PU a
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Fig. 6-A(T) Corresponding to a discrete repair time taking two t
values and having mean and standard deviation equal to 10 days
(Repair time equals 0 or 20 days with probabilities 1/2, 1/2)

4 ---'-

2

-21 -19 0 is 20 as 46 50 s

Fi8. 7-%(T) Corresponding to a discrete repair time taking four
values and hav6ng man and standard dviatioa equal to 10 days
(sepair time equals 0, 10, 20, or 30 days with probabilities

3/, 3,8, 1,8, 1/8)

A.. ~OEM
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Fig. 8-1(T) Corresponding to a constant repair time of ten days

current system provides percent base repair (PBR), repair cycle time

(RCT), and order ship time (OST) for all items. If this information

is used and repair time is assumed equal to RCt with probability PBR

and to OST with probability (1 - PBR), we have a simple approximation
of repair time distribution. In view of the discussion on the degree

of smoothness and peakedness, it can be seen that this estimate is
slightly conservative-that is, its A function will be slightly more
peaked than if we knew the true repair time distribution.

In summary, minor excursions from the war plans will not invali-

date a dynamic requirements calculation. There are unlikely to be any

differences between the real and the planned demand pattern that will

cause the dynamic calculation to substantially underestdoate the parts
requirements. AlthouSh additional data are needed in the dynamic view

(some details of the repair time distribution), these data are cur-

rently available In the base supply system in adequate detail.

1.

-- ____,__ __ _ _____... ._ _ _
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Appendix

NONHOMOGENEOUS FORM OF PALM'S THEOREM

NOTATION

Let X(t), te(-,4-.) be the random number of arrivals up to and

including time t.

Let M(t) - Ex(X(t)), te(-m,4m)

Let A(k), k - 1,2,..., be the random time of the kth arrival;

that is, A(k) - t if X(t) - k and X(s) < k for all s < t.

Let S(k), k - 1,2,..., be the random survival time of the kth

arrival.

Let F(t,T) - Pr(A(k) + S(k) > T I A(k) - t) if T 4 T
= 0 otherwise

With this notation we make the following assumptions:

(1) M(t) is finite for all finite t.

(2) (X(t), tc(-m, +-)) is a Poisson process with mean func-

tion M(*); that is, the process is separable (Doob, 1959) and if

s < t then X(t) - X(s) is a Poisson r.v. with mean M(t) - M(s).

(3) S(k) is independent of S(n) for n * k; n,k, - 1,2,....

(4) S(k) is independent of A(n) for n * k; n,k, = 1,2,....

In the sequel these assumptions will be abbreviated as follows:

(X(t)) is a Poisson process with mean function M(e) , and the

survival process is independent of the arrival process.

NONHOMOGENEOUS FORK OF PALM'S THEOREM

Under the above assumptions if F(t, T) is, for fixed T, measur-

able in t, then the number of survivors at time T is a Poisson r.v.

with mean

A(T) - f i(t,T)dM(t).

* Note that the function M(e) is, by definition, nondecreasing and

right continuous. We have not assumed, as is common in the literature,
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that M(o) is continuous. The added generality allows us to treat

processes where arrivals may be bunched at discrete times as well as

continuous time models and combinations. Combinations of continuous

time and discrete time processes occur in practical production prob-

lems where overnight arrivals are serviced at the beginning of the day

shift, and day shift arrivals are serviced in near real-time.

It follows from the above definition and properties of the Pois-

son distribution function that a Poisson process has independent in-

crements *

The assumption that F(t,T) is "measurable" is about the weakest

assumption that can be made and still have the integral SF(t,T)dM(t)

make sense. The measurability condition is met, for instance, if

F(*,T) has no more than a countable number of discontinuities.

If the arrival process is compound Poisson then the general

result still holds: The number of survivors is a compound Poisson

r.v. I have assiduously avoided treating this more general problem

for several reasons:

(1) If the compounding distribution changes in time, the com-

pounding distribution for the number of survivors is quite complica-

ted.

(2) Renewal processes are uncommon where the arrival process is

Poisson with a continous mean function but the arrivals are nontrivial

bunches.

(3) The practice of assuming an arrival process is compound

Poisson when the data exhibit a variance-to-mean ratio greater than 1,

as is often advocated in the literature, has little legitimate Jus-
tification. If the variance-to-mean ratio is signifi.dyv larger

than I (whatever that means), the arrival process is more often

nonhomogeneous than is compound Poissons that Is, as a result of ex-
traneous influences, some cells should be expected to have more obser-

vations then others. In inventory applications, treating the arrival

process as a compound Poisson when it is in fact nonhomogeneous Pois-

son am be shown to have a significant effect on the optimal stocking

plan (Lu,

to. pro" the dnmatc orf nonhomgsaeous *orm ok Palla's Theotm

;"I calls for six lmw . The first thtee are well-knom measure theo-

-- -.--- -~. -
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retic results included here for completeness. Lemma 4 (Kallenberg,
1976, p. 52) establishes the measure theoretic underpinnings of the

theorem. Lemmas 5 and 6 extend the ideas of the simple proof ofPalm's Theorem given in Section II to the dynamic case.

Lemma I (Halmos, 1950)

M(s) determines a measure on the ring R generated by left open,
right closed bounded intervals of the form (r, s {t: r < t s}.
H[. is defined by the requirement that

M[(r, sl - H(s) - M(r).

Lemma 2 (Halmos, 1950)

M(I] has a unique extension (also called M[o]) to the o -
ring S of Lebesque measurable sets generated by R.

Lemma 3
A realization of the random process {X(t)} has a unique extension

to a random measure X[.J on S with the property that X[E], E e S, is
the number of arrivals in E:

X[E] - 1 IE [A(k)]
k

Lemma 4 (Kallenberg, 1976)

For E e S, X[E] is a Poisson r.v. with mean M[E].
The next lemma is a restatement of the fact (Feller, 1957, p.

160) that if a Poisson arrival process is randomly censored--arrivals
jare either detected or undetected as the result of an independent

random selection--the detected arrivals are also a Poisson process.
This almost trivial result is key to Palm's Theorem.

Lema 5
If (X(T)) is a PoLsson arrival process with man function M(*)

and, independent of the arrival process, each arrival before time T

j . . . .. .. . .
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survives until T with probability p; then if E c S, the number of

arrivals in E before T that survive until T is a Poisson r.v. with

mean

p * M[E n {t: 4 TI].

The next lemma establishes the dynamic form of Palm's Theorem for

a class of survival time distributions that have little practical

utility but happen to be dense in the class of all measurable survival

time distributions. It is a straightforward application of lemma 6.

Lemma 6

If F(t,T) is, for fixed T, a simple function of t (constant on

finitely many bounded sets Ei C S and zero elsewhere) and the survival

process is independent of the arrival process; theni the size of the

population at time T is a Poisson r.v. with mean

f F(t,T)dM[t].

Proof of lemma 6. If FP(,T) is constant on Ei, say

F(t,T) - p, p > 0, for all t C Eu, then by lemma 5, the number of

arrivals at t, t e E, that survive until T is Poisson with mean

pM[E In (--, T)] - fE iF(t,T)dM[T].

Because F is zero except on finitely many disjoint sets Ei, the

result follows by summing over i.

Proof of the dynamic form of Palm's Theorem. Given an

[X(k), F(t,T)] arrival-survival process, the process can be "squeezed"

between two ancillary arrival-survival processes, which are construc-

ted so that they satisfy the requirements of lemma 6.

To simplify the notation, consider T fixed and define a "counting

function" B.

{ 1 if X(k) < T, and X(k) survives until T
a(X(k)) -II 0 otherwise.
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Then, independent of the arrival process, for any large n, define two

random processes D nX(k)] and Cn [X(k)] as follows:

For each X(k), let i, 0 4 i 4 n, be defined so that

i - i+ I
- 4 F[X(k),T] <in n

If B[X(k)] - 1, let

I with probability i/n

D n[X(k)] F[X(k),TJ

with probability I i/n

F[X(k),T]

and if B[X(k)] - 0, let Dn [X(k)] - 0.

Then Dn[X(k)] 4 B[X(k)] and D n[X(k)] can be considered the num-

ber of survivors at T of an arrival-survival process where the sur-

vival distribution Gn (t,T) is equal to i/n on the sets Ei a

{t: i/n • F(t,T) < (i + 1)/n), i - I,..., n and zero elsewhere. Thus,

by lemma 6, D n[X(k)] is a Poisson r.v. with mean
k

a n( t,T)dHitl.

Similarly, we may define a Cn [X(k)] process that bounds B[X(k)] on

the other side. For each X(k), let i be as before.

If B[X(k)] 0, and i - n, let Cn[X(k)] - 1. For i < n let

I with probablity (I + 1)/n - F[X(k),T
I - F[x(k),T]

? Cn[X(k)]-

C~ E(k) + 11- F(X~k),TJ
{ with probability 1 - ( + 1)/n - F{X(k),T]

I - FEx(k),T)
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If B[X(k)] = 1, then let Cn [X(k)] - 1. Then B[X(k)] 4 Cn[X(k)] and

the survival distribution Hn (t,T) for the C
n process is equal to min

[(i + 1)/n,l] on E i - 0,..., n) and zero elsewhere. Thus, by lemma

6, ECn [X(k)] is a Poisson r.v. with mean

f H(t,T)dM[Tj.

To finish the proof note that for large n and any m - 0,1,...,

Pr(jvn[X(k)] i n) Pr(IB[X(k)] 4 m) ) Pr(Xcn[X(k)] 4 m)

and the terms on the left and right are cumulative Poisson probabil-

ities with means

s Gn(t,T)dM [T ]  and f Hn(t,T)d M[ t ] ,

respectively. It follows from the construction of Dn and Cn that

Gn(t,T) 4 F(t,T) • Hn(t,T) and 0 4 Hn(tT) - Gn(t,T) ( I/n.

Thus, the difference between the means of the Poisson randon variables

mentioned above is no more than M(T)/n. It follows that LBIX(k)] is a

Poisson r.v. with mean i F(t,T)dM[t], as was to be shown.

L k
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